Theory¶
Methods¶
All harmonization is based on the following equations.
\(\beta\): the harmonization convergence parameter
\[\begin{split}\begin{equation}\label{eqs:factor}
\beta(t, t_i, t_f) =
\begin{cases}
1 - \frac{t - t_i}{t_f - t_i},& \text{if } t \leq t_f\\
0, & \text{otherwise}
\end{cases}
\end{equation}\end{split}\]
\(m^{rat}\): ratio-based harmoniation
\[\begin{equation}\label{eqs:ratio}
m^{rat}(t, m, h, t_i, t_f) = [\beta(t, t_i, t_f) (\frac{h(t_i)}{m(t_i)} - 1) + 1] m(t)
\end{equation}\]
\(m^{off}\): offset-based harmoniation
\[\begin{equation}\label{eqs:offset}
m^{off}(t, m, h, t_i, t_f) = \beta(t, t_i, t_f) (h(t_i) - m(t_i)) + m(t)
\end{equation}\]
\(m^{int}\): linear-interoplation-based harmoniation
\[\begin{split}\begin{equation}\label{eqs:interpolate}
m^{int}(t, m, h, t_i, t_f) =
\begin{cases}
\frac{m(t_f) - h(t_i)}{t_f - t_i}(t - t_i) + h(t_i), & \text{if } t \leq t_f\\
m(t), & \text{otherwise}
\end{cases}
\end{equation}\end{split}\]
These harmonization methods are made available in aneris
by name
selection. Available names are listed below:
Method Name | Harmonization Family | Convergence Year |
---|---|---|
constant_ratio |
ratio | \(t_f = \infty\) |
reduce_ratio_<year> |
ratio | \(t_f = \texttt{<year>}\) |
constant_offset |
offset | \(t_f = \infty\) |
reduce_offset_<year> |
offset | \(t_f = \texttt{<year>}\) |
linear_inerpolate_<year> |
interpolation | \(t_f = \texttt{<year>}\) |
Default Decision Tree¶
While any method can be used to harmonize a given trajectory, intelligent defaults are made available to the user. These default methods are deteremined by use of a decision tree, which analyzes the historical trajectory, model trajectory, and relative difference between trajectories in the harmonization year. The decision tree as implemented is provided below: